MULTIPLE CHOICE Choose the correct answer from the following choices: 1. The characteristics of reversible reactions are the following except:				
			products never recombine to form reactants	
			they never complete	
they proceed in both ways				
they have a double arrow between reactants and products				
2. In the lime kiln, the reaction CaCO _{3(s)} → CaO _(s) + CO _{2(g)} goes to completion because;				
of high temperature				
CaO is more stable than $CaCO_3$				
CO ₂ escapes continuously				
CaO is not dissociated				
3. For the reaction $2A_{(g)} + B_{(g)} \longrightarrow 3C_{(g)}$ the expression for the equilibrium constant is:				
[2A] [B]				
[3C]				
[A] ² [B]				
[C] ³				
[3C]				
[2A] [B]				
[C] ³				
[A] ² [B]				
4. When a system is at equilibrium state:				
the concentration of reactants and products becomes equal				
the opposing reactions (forward and reverse) stop				
the rate of the reverse reaction becomes very low				
the rates of the forward and reverse reactions become equal				
5. Which one of the following statement is not correct about active mass?				
rate of reaction is directly proportional to active mass				
active mass is taken in molar concentration				
active mass is represented by square brackets				
active mass means total mass of substances				

6. When the magnitude of K _c is very large it indicates:		
reaction mixture consists of almost all products		
reaction mixture has almost all reactants		
reaction has not gone to completion		
reaction mixture has negligible products		
7. When the magnitude of K _c is very small, it indicates:		
equilibrium will never establish		
all reactants will be converted to products		
reaction will go to completion		
the amount of products is negligible		
8. Reactions which have comparable amounts of reactants and products at equilibrium state have:		
very small K _c value		
very large K value		
moderate K value		
none of these c		
9. At dynamic equilibrium:		
the reaction stops to proceed		
the amounts of reactants and products are equal		
the speeds of the forward and reverse reactions are equal		
the reaction can no longer be reversed		
10. In an irreversible reaction dynamic equilibrium:		
never establishes		
establishes before the completion of reaction		
establishes after the completion of reaction		
establishes readily		

11. A reverse reaction is one that:	
which proceeds from left to right	
in which reactants react to form products	
which slows down gradually	
which speeds up gradually	
12. Nitrogen and hydrogen were reacted together to make an	nmonia: N₂+3H₂ ╤══╧ 2NH₂ K₂ = 2.86 mol⁻²dm⁵
What will be present in the equilibrium mixture?	
NH ₃ only	
$N_2 H_2$ and NH_3	
N, and H, only	
H_2 only	
13. For a reaction between PCL ₃ and Cl ₂ to form PCl ₅ , the unit	ts K _c are:
mol dm ⁻³	
mol ⁻¹ dm ⁻³	
mol ⁻¹ dm ³	
mol dm ³	